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Abstract

A set of linearly independent nonorthogonal symmetric d-level quantum states
can be discriminated remotely and unambiguously with the aid of two-level
Einstein–Podolsky–Rosen (EPR) states. We present a scheme for such a kind
of remote unambiguous quantum state discrimination (UD). The probability
of discrimination is in agreement with the optimal probability for local
unambiguous discrimination among d symmetric states (Chefles and Barnettt
1998 Phys. Lett. A 250 223). This scheme consists of a remote generalized
measurement described by a positive operator valued measurement (POVM).
This remote POVM can be realized by performing a nonlocal 2d × 2d unitary
operation on two spatially separated systems, one is the qudit which is encoded
by one of the d symmetric nonorthogonal states to be distinguished and the
other is an ancillary qubit, and a conventional local von Neumann orthogonal
measurement on the ancilla. By decomposing the evolution process from the
initial state to the final state, we construct a quantum network for realizing the
remote POVM with a set of two-level nonlocal controlled-rotation gates, and
thus provide a feasible physical means to realize the remote UD. A two-level
nonlocal controlled-rotation gate can be implemented by using a two-level EPR
pair in addition to local operations and classical communications (LOCCs).

PACS numbers: 03.67.Hk, 03.65.Ta

1. Introduction

Quantum state discrimination (QSD) is one of the fundamentally important problems in
quantum information science and poses fundamental limitations on the amount of information
that can be obtained about the state of a single system. Many novel schemes in quantum
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communication and computation, such as quantum cryptography [1, 2], quantum teleportation
[3] and entanglement concentration [4], etc, are based on the fact that nonorthogonal states
cannot be discriminated in a determinate way. A great deal of attention has been attracted into
this field in recent years, especially the ‘unambiguous quantum state discrimination’ (UD).
UD is a sort of discrimination that never gives an erroneous result, but sometimes it may fail.
UD was pioneered two decades ago by Ivanovic–Dieks–Peres (IDP) for finding the optimal
probability of conclusive discrimination between two nonorthogonal states with equal a priori
probability [5–7]. Jaeger and Shimony have generalized this result by considering the case of
states with different a priori probability [8]. Chefles and Barnett [9] have generalized IDP’s
solution to an arbitrary number of equally probable states which are related by a symmetry
transformation. The physical methods proposed to do UD include linear optics [10], ion
trap architecture [11] and nuclear magnetic resonance [12]. Experiments for discriminating
between nonorthogonal polarization states at IDP limit were accomplished utilizing linear
optics only [13, 14]. In the same way, the experimental setup of unambiguous discrimination
among three nonorthogonal quantum states was carried out by Mohsenit et al [15], with a
success rate of 55%.

To unambiguously discriminate nonorthogonal quantum states, we need to use general
positive operator valued measurement (POVM) instead of orthogonal projectors. A POVM is
given by a set of Kraus operators {Mi} [16]. For a POVM with n operators, they must satisfy
the completeness relation

∑n
i=1 M+

i Mi = I . Each Mi corresponds to a distinct outcome
of the operation. A POVM performed on a quantum system B can always be realized by
entangling system B with ancillary system A via unitary evolution UBA [16], which usually
is a conditional evolution. Postselection (projective measurement) of the ancilla induces an
effective nonunitary transformation ε of original system |φ〉B , i.e.

ε[|φ〉B] = TrA
[
UAB |φ〉B ⊗ |φ〉AU+

BA

]
, (1)

where |φ〉A is an appropriately chosen state of ancillary system A and TrA denotes the partial
trace over ancilla A. By the appropriate design of the entangling unitary, this effective
nonunitary transformation can turn an initially nonorthogonal set of states into a set of
orthogonal states with a finite probability of success. The optimum strategy is the one
that maximizes the average probability of success for this procedure.

However, all the investigations mentioned above concentrate on the local QSD. One would
like to know whether the QSD can be remotely implemented in a completely different way
compared with a classical state discrimination. To be specific, let us consider two spatially
separated parties Alice and Bob. The state to be determined is possessed by Bob, but Alice
performs a nonlocal POVM and informs Bob if the outcome is successful, in which case
Bob can perform an orthogonal measurement to determine his state. We called this QSD
scheme a remote one. Remote QSD, which is a special case of remote interaction, is a critical
step for implementation of networked quantum communication processing and distributed
quantum computation. It can also be used, e.g., as an efficient remote attack in quantum
cryptography.

In this paper, we try to deal with the problem of remote UD. We should extend the scheme
introduced in [9] to remote UD. Beside section 1 written as an introduction, the paper is
organized as follows. In section 2, we present an explicit scheme for remote unambiguous
discrimination of linear independent symmetric d-level quantum states, where the remote
generalized measurement described by a positive operator valued measure lies at the heart.
We construct the required remote POVM. We also construct a quantum network for realizing
the remote POVM with the aid of two-level EPR pairs and LOCCs. In section 3, we summarize
our main results and conclusions.
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2. Scheme for remote unambiguous discrimination of linear independent symmetric

quantum states

Assume that Alice and Bob are involved in the process. Alice possesses a device which is able
to perform local POVMs. Further assume that a d-level quantum system (qudit) is prepared
in one of the d nonorthogonal states {|ψl〉} lying in a d-dimensional Hilbert space. We restrict
ourselves to the case of nonorthogonal linearly independent states, which are symmetric,
defined by

|ψl〉 = Zl|ψ0〉 (l = 0, 1, . . . , d − 1), (2)

where |ψ0〉 = ∑d−1
k=0 ck|k〉 and all real coefficients ck are nonzero satisfying

∑d−1
k=0 c2

k = 1. The
action of the Z operator on this state is such that Z|j 〉 = exp(i2πj/d)|j 〉 and Zd = I . We hand
Bob the qudit, and inform only Alice what are the possible states |ψl〉B . We wish to design
a remote QSD scheme, which should satisfy the requirement that Bob knows which state his
qudit was prepared in, and furthermore, which never gives errors. The trivial realization of
remote UD can be finished by the bidirectional quantum state teleportation. The discriminated
state is teleported from Bob to Alice. Then Alice performs a local POVM on the state and
sends the resulting state back to Bob via another state teleportation. The total resources for
this trivial protocol are two edits (entanglement qudits) and four cdits (classical dits) [17]. And
there is no restriction for the discriminated states. In general however, the implementation
of remote UD with quantum state teleportation methods may not be efficient, and provides
only an upper bound on the required amount of entanglement. Since entanglement is an
expensive resource, it is important to optimize its usage and search for economic methods
for implementing remote UD. For the remote unambiguous discrimination of the quantum
states |ψl〉B , a better way is through the direct teleportation of the quantum operation UBA of
equation (1). We have known that the minimum communication cost for teleportation of a
certain kind of d-level non-local condition unitary evolution, such as a non-local generalized
controlled-NOT gate, is one edit and two cdits [18].

2.1. Nonlocal system-ancilla conditional evolution

Our immediate task is to build up the nonlocal condition unitary evolution UBA of equation
(1), which could projects remotely the state |ψl〉 of equation (2) onto a set of orthogonal states
{|ul〉} and onto another set of linearly dependent sates {|φl〉}. That is, we are only interested
in discriminating between a conclusive result and an inconclusive result.

To do this, a two-level auxiliary particle A with the initial state |φ〉A = |0〉A is introduced
by Alice, and a unitary transformation UBA, in the entangled ancilla-system space, based on the
basis {|00〉BA, |10〉BA, . . . , |(d − 1)0〉BA, |01〉BA, |11〉BA, . . . , |(d − 1)1〉BA} is constructed

UBA =
(

M0 M1

M1 −M0

)
, (3)

where M0, M1 are d × d Kraus operators, and may be expressed as

M0 = diag(a0, a1, . . . , ak, . . . , ad−1), (4)

M1 = diag
(√

1 − a2
0,

√
1 − a2

1, . . . ,

√
1 − a2

k , . . . ,

√
1 − a2

d−1

)
. (5)

Here |ak| � 1(k = 0, 1, 2, . . . , d−1) can be determined by dividing cmin (cmin = min{|ck|, k =
0, 1, . . . , d − 1}) by the coefficient of the kth term shown in equation (2), for instance,
a3 = cmin/c3.
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After applying the nonlocal conditional evolution UBA on the compound system A and
B, we get

|ψ〉e = UBA|ψl〉B |0〉A = M0|ψl〉B |0〉A + M1|ψl〉B |1〉A. (6)

From equations (4)–(6), it follows that the nonlocal unitary evolution UBA together with
the Alice’s conventional local orthogonal measurement is equivalent to the required remote
POVM. After Alice measuring her ancilla, we find whether M0 or M1 have been generated
remotely. M0 acts to rotate remotely the state |ψl〉B to

M0|ψl〉B = cmin{|0〉B + exp(i2πl/d)|1〉B
+ · · · + exp[i2πl(j − 1)/d]|j − 1〉B + exp(i2πlj/d)|j 〉B
+ exp[i2πl(j + 1)/d]|j + 1〉B + · · · + exp[i2πl(d − 1)/d]|d − 1〉B}

= (cmin

√
d)

⎡
⎣(1/

√
d)

d+1∑
j=0

exp(i2πlj/d)|j 〉B
⎤
⎦

= (cmin

√
d)|ul〉B, (7)

in which case Bob can distinguish with certainty among |ψl〉B (l = 0, 1, . . . , d − 1) by
performing a Xd-MB [19] on his qudit B locally. If the ancilla is observed to be in the state
|1〉A, M1 maps the state |ψl〉B into

M1|ψl〉B =
√

c2
0 − c2

min|0〉B +
√

c2
1 − c2

min exp(i2πl/d)|1〉B
+ · · · +

√
c2
j−1 − c2

min exp[i2πl(j − 1)/d)|j − 1〉B
+

√
c2
j+1 − c2

min exp[i2πl(j + 1)/d)|j + 1〉B
+ · · · +

√
c2
d−1 − c2

min exp[i2πl(d − 1)/d)|d − 1〉B, (8)

and the inconclusive result is obtained. The success probability of remote UD among |ψl〉B
(l = 0, 1, . . . , d − 1) is

P = 〈ψl|BM+
0 M0|ψl〉B = d|cmin|2, (9)

which is identical to that in an ordinary local POVM [9].
Some remarks should be made 1. The auxiliary particle is not necessarily a two-level

system. However, it has been proved that we cannot extract more quantum information with
more probe qubits [20]. That is, the maximal probability is independent of the resources used.
Therefore, we can just as well use a two-level qubit as we probe 2. The initial state of the
auxiliary qubit can be arbitrary and does not affect the result. We take the initial state as |0〉A
for convenience 3. The UBA operator is not unique, there are other similar forms [21].

We have shown above that the remote UD of d linearly independent symmetric quantum
states can be realized by performing a nonlocal 2d × 2d conditional evolution UBA on two
spatially separated systems (B, A) and a local orthogonal measurement on the ancilla A. For
implementation of the nonlocal quantum operation in higher dimensional Hilbert space, one
should note that the analog of singlet EPR pair (multi-level EPR pair) including the counterpart
in [18] is necessary. However, a multi-level EPR pair is very difficult to be prepared. In
contrast, the preparation of the two-level EPR pair can be realized by different schemes
[22, 23]. A more important question is that, since a state of qudit can be teleported with the
aid of two-level EPR pairs [17], whether the similar version is suitable for teleportation of
quantum operation UBA.
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2.2. Decomposing the nonlocal system-ancilla conditional evolution into a circuit of
two-level controlled gate

It deserves mentioning that the quantum logic network is essential for practical realization of
the remote UD in experiment. In the following, we should construct a quantum logic network
to realize the nonlocal quantum operation UBA with a set of two-level nonlocal controlled-
rotation gates. And a two-level nonlocal controlled-rotation gate can be implemented by using
a two-level EPR pair in addition to LOCCs.

There are two usual methods to construct a quantum network. One is to decompose the
unitary operation into arbitrary rotation gates on a single qubit and controlled-NOT (CNOT)
gates on two qubits [16]. Recently, based on the theory of majorization, Gu et al showed
the second method to construct the quantum network in realizing deterministic entanglement
concentration [24]. In their method, the quantum network is obtained by decomposing the
evolution process from the initial state to the final state. Here we construct the needed quantum
network using Gu et al’s method.

For the unitary evolution defined by equation (6), the initial state reads

|ψ〉0 = |ψl〉B |0〉A
= c0|00〉BA + c1 exp(i2πl/d)|10〉BA + · · · + cj−1 exp[i2πl(j − 1)/d]|(j − 1)0〉BA

+ cj exp(i2πlj/d)|j0〉BA + cj+1 exp[i2πl(j + 1)/d]|(j + 1)0〉BA

+ · · · + cd−1 exp[i2πl(d − 1)/d]|(d − 1)0〉BA, (10)

and the final state reads

|ψ〉e = cmin{|00〉BA + exp(i2πl/d)|10〉BA + · · · + exp[i2πl(j − 1)/d]|(j − 1)0〉BA

+ exp(i2πlj/d)|j0〉BA + exp[i2πl(j + 1)/d]|(j + 1)0〉BA

+ · · · + exp[i2πl(d − 1)/d]|(d − 1)0〉BA}
+

√
c2

0 − c2
min|01〉BA +

√
c2

1 − c2
min exp(i2πl/d)|11〉BA

+ · · · +
√

c2
j−1 − c2

min exp[i2πl(j − 1)/d)|(j − 1)1〉BA

+
√

c2
j+1 − c2

min exp[i2πl(j + 1)/d)|(j + 1)1〉BA

+ · · · +
√

c2
d−1 − c2

min exp[i2πl(d − 1)/d]|(d − 1)1〉BA. (11)

According to equations (6), (10) and (11), the components of |ψ〉0 evolve in the following
manner:

c0|00〉BA ⇒ cmin|00〉BA +
√

c2
0 − c2

min|01〉BA, (12a)

c1|10〉BA ⇒ cmin|10〉BA +
√

c2
1 − c2

min|11〉BA,
(12b)

. . .

cj−1|(j − 1)0〉BA ⇒ cmin|(j − 1)0〉BA +
√

c2
j−1 − c2

min|(j − 1)1〉BA, (12c)

cj |j0〉BA ⇒ cmin|j0〉BA, (12d)

cj+1|(j + 1)0〉BA ⇒ cmin|(j + 1)0〉BA +
√

c2
j+1 − c2

min|(j + 1)1〉BA,
(12e)

. . .

5
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cd−1|(d − 1)0〉BA ⇒ cmin|(d − 1)0〉BA +
√

c2
d−1 − c2

min|(d − 1)1〉BA. (12f )

Correspondingly, we decompose the evolution process from |ψ〉0 to |ψ〉e into d steps, where
each step implements one of the evolutions (12). This can be realized by applying a unitary
operation to qubit A under the control of different logical states of system B. The evolutions
(12a)–(12f ) correspond respectively to the control conditions of qudit B which are in the
logical states |0〉, |1〉, . . . , |j − 1〉, |j 〉, |j + 1〉, . . . , and |d − 1〉. In the first step, the evolution
(12a) is realized by applying to qubit A a unitary operation U0 satisfying

U0|0〉A = (cmin/c0)|0〉A +
√

1 − (cmin/c0)2|1〉A, (13)

if and only if B is in |0〉. In the basis {|0〉, |1〉}, the matrix of U0 can be written as

U0 =
(

cmin/c0 −
√

1 − (cmin/c0)2√
1 − (cmin/c0)2 cmin/c0

)

=
(

cos(θ0/2) −sin(θ0/2)

sin(θ0/2) cos(θ0/2)

)
≡ Uy(θ0), (14)

where Uy(θ0) is the rotation operator about the y-axis [16]. We can see that the evolution of
equation (12a) is just a nonlocal two-level controlled-rotation transformation

UB0A = |0〉B〈0|B ⊗ [Uy(θ0)]A + |1〉B〈1|B ⊗ IA. (15a)

In the same way, the evolutions (12b)–(12f ) are realized respectively by applying the nonlocal
controlled-rotation transformations

UB1A = |1〉B〈1|B ⊗ [Uy(θ1)]A + |0〉B〈0|B ⊗ IA, (15b)

. . .

UBj−1A = |j − 1〉B〈j − 1|B ⊗ [Uy(θj−1)]A + |0〉B〈0|B ⊗ IA, (15c)

UBj A = I, (15d)

UBj+1A = |j + 1〉B〈j + 1|B ⊗ [Uy(θj+1)]A + |0〉B〈0|B ⊗ IA,
(15e)

. . . ,

UBd−1A = |d − 1〉B〈d − 1|B ⊗ [Uy(θd−1)]A + |0〉B〈0|B ⊗ IA (15f )

on qubit A and on the respective logical state |1〉, . . . , |j − 1〉, |j 〉, |j + 1〉, . . . , |d − 1〉 of
qudit B, where

Uy(θi) =
(

cmin/ci −
√

1 − (cmin/ci)2√
1 − (cmin/ci)2 cmin/ci

)

=
(

cos(θi/2) −sin(θi/2)

sin(θi/2) cos(θi/2)

)
. (16)

Summarizing, UBA can be decomposed into the product of (d − 1) two-level nonlocal
controlled-rotation transformations

UBA =
d−1∑
k=0

UBkA (k �= j), (17)

where UBkA acts non-trivially only on two vector components of the d-dimensional Hilbert
space HB and two-dimensional Hilbert space HA. Since [UBkA,UBk′A] = 0 for any
k, k′ = 0, 1, . . . , j − 1, j + 1, . . . , d − 1, we need not distinguish their order. By
equation (17) we simplify the problem in operation of UBA, for the quantum operation which
acts on a two-level system is far more feasible than that on a multi-level system.

6
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2.3. Implementing nonlocal controlled-rotation gate using a two-level EPR pair

Now our task is to construct another quantum network for implementing the nonlocal
controlled-rotation gate of equations (15), for example,

UBkA = |k〉B〈k|B ⊗ [Uy(θk)]A + |0〉B〈0|B ⊗ IA (k = 1, 2, . . . , j − 1, j + 1, . . . , d − 1),

(18)

by using a two-level EPR pair |E〉kab = (|00〉+ |kk〉)ab and LOCCs. (Here and in what follows,
we leave out normalization factors for states.). We give qubit a to Alice and qubit b to Bob.
The following operations must be performed

Firstly, Alice performs a local controlled-rotation gate

UaA = |0〉a〈0|a ⊗ [Uy(θk)]A + |k〉a〈k|a ⊗ IA (19)

on her qubits a and A followed by a local Hadamard gate Hk
a (|0〉 → |0〉+ |k〉, |k〉 → |0〉−|k〉)

on qubit a.
Then, Alice measures the state of qubit a and sends the result to Bob. When the result is

|k〉a , Bob needs to perform a σ k
Z gate (|0〉 → |0〉, |k〉 → −|k〉) on qubit b, but no operation is

applied otherwise. After that, we have

ck|k〉B |0〉A(|00〉 + |kk〉)ab ⇒ ck|k〉B{|k〉b|0〉A + |0〉b[Uy(θk)|0〉A]}. (20)

Lastly, Bob measures the state of his qubit b, and the measurement result is communicated
to Alice. As soon as Alice is informed of Bob’s result, she can perform an appropriate
unitary transformation (according to the two possible results |k〉b and |0〉b, the corresponding
transformation are Uy(θk) and I ) on qubit A to obtain the state

ck|k〉B{|k〉b|0〉A + |0〉b[Uy(θk)|0〉A]} ⇒ ck|k〉B[Uy(θk)|0〉A]

= UBkA(ck|k〉B |0〉A). (21)

This completes the implementation of nonlocal unitary operation UBkA. The implementation
consumes one two-level EPR pair represented by the state |E〉kab, and one cbit in each direction
to communicate the measurement outcomes.

To summarize, to complete the transformation of equation (6) the present scheme requires
(d − 1) two-level EPR pairs and 2(d − 1) cbits in total. The distinct advantage of this scheme
is that only a multichannel which is made up of (d − 1) two-level EPR pairs is used. And a
two-level EPR pair is easy, being contrary to the multi-level EPR pair, to be prepared.

3. Summary

We have proposed a scheme for remote unambiguous discrimination of a set of equally likely,
symmetric, linearly independent, d-dimensional nonorthogonal states. Our scheme has been
designed for obtaining the optimal value of local conclusive measurements, which is given
by Chefles bound [9]. The scheme consists of a remote POVM. We explicitly construct the
required remote POVM, which can be realized by performing a nonlocal 2d × 2d unitary
operation on Alice’s ancilla A and Bob’s qudit B, and the conventional local orthogonal
measurement on ancilla. The implementation of the remote POVM in this scheme demands
a small-scale quantum communication network. By decomposing the evolution process from
the initial state to the final state, we construct a quantum network for realizing the remote
POVM with the aid of two-level EPR pairs and LOCCs, and thus provide a physical means
to realize the remote UD. This method is convenient for a large class of nonlocal quantum
processes involving remote POVM. The interest in the remote UD is not ‘academic’, remote
UD can be used, e.g., as an efficient remote attack in quantum cryptography.

7
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Recently, an experimental scheme for local unambiguous discrimination of four linearly
independent symmetric states based on linear optics only have been proposed [25]. A nonlocal
two-level CNOT gate and a nonlocal arbitrary single qubit rotation gate have been implemented
experimentally in a linear optics setup as reported in [26, 27]. Therefore, we believe the scheme
in our paper will be realized in experiment.
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